31P-magnetic resonance spectra of ovarian cancer cells exposed to chemotherapy within a three-dimensional Matrigel construct.
نویسندگان
چکیده
We aimed to determine the metabolic profile and effects of chemotherapy on ovarian cancer cell metabolism in a three-dimensional (3D) vs. a two-dimensional (2D) construct using 31P-magnetic resonance spectroscopy (MRS). Three ovarian cancer cell lines were embedded in a 3D perfused Matrigel construct or grown in a 2D monolayer. Metabolic differences between the three cell lines were determined using 31P-MRS both in the 3D and in the 2D constructs. Cells were incubated with three different cytotoxic drugs at LC50 for 44 h and evaluated for metabolic changes using 31P-MRS. While the 3D construct allowed MRS assessment of viable cells, the 2D monolayer permitted evaluation of non-viable cell extracts. In both cells embedded in Matrigel (CEM) and cells grown in monolayers (CGM) different cancer cell lines showed characteristic metabolic fingerprints, which differed significantly between CEM and CGM. In contrast to the cell monolayer, CEM allowed continuous monitoring of the changes in 31P-MRS spectra over time following exposure to chemotherapy, demonstrating a progressive decrease in specific phosphorylated metabolites. The metabolic response of CEM and CGM to various antimitotic agents was significantly different. We conclude that different ovarian cancer cell lines show characteristic 31P-MRS fingerprints and specific metabolic changes in response to cytotoxic drug treatment. The perfused 3D Matrigel construct is superior to the 2D tissue monolayer for 31P-MRS studies, because it simulates the in vivo conditions more closely and facilitates MRS evaluation of viable cells as well as continuous monitoring of metabolic changes in response to chemotherapy over time.
منابع مشابه
Measurements of in vivo 31P nuclear magnetic resonance spectra in neuroectodermal tumors for the evaluation of the effects of chemotherapy.
The effects of chemotherapy on living tumor tissue in hamsters and rats were investigated by measuring the 31P nuclear magnetic resonance spectra using topical magnetic resonance. Human neuroblastoma, human glioblastoma, and rat glioma tumor cells were inoculated s.c. in the lumbar region of the animals. After the diameter of the tumors increased to 1.5 cm, in vivo 31P nuclear magnetic resonanc...
متن کاملFe3O4@Ag Nanoprobe for Detection of Ovarian Cancer Cell Line Using Magnetic Resonance Imaging
Background and Aims: Magnetic resonance imaging (MRI) plays an essential role in molecular imaging by delivering the contrast agent into targeted cells. The aim of this study was to evaluate the use of magnetic nanoparticles containing iron oxide and silver (Fe3O4@Ag core-shell nanoprobe) as a contrast agent for the detection of ovarian cancer cell line ovcar-3. Materials and Methods: Co-preci...
متن کاملLevels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study.
Magnetic resonance spectroscopy (MRS) methods have provided valuable information on cancer cell metabolism. In this study, we characterized the 31P-MR spectra of breast cancer cell lines exhibiting differences in hormonal response, estrogen receptors (positive/negative), and metastatic potential. A correlation was made between the cytotoxic effect of antimitotic drugs and changes in cell metabo...
متن کاملMetabolic characterization of human non-Hodgkin's lymphomas in vivo with the use of proton-decoupled phosphorus magnetic resonance spectroscopy.
Development of biological and clinical uses of in vivo 31P magnetic resonance spectroscopy has been hampered by poor anatomic localization of spectra and poor resolution of overlapping signals within phosphomonoester and phosphodiester regions of the spectrum. We applied 1H-decoupling and nuclear Overhauser enhancement to improve resolution of 31P magnetic resonance spectra accurately localized...
متن کاملMetabolic characterization of human soft tissue sarcomas in vivo and in vitro using proton-decoupled phosphorus magnetic resonance spectroscopy.
We applied 1H-decoupling and nuclear Overhauser enhancement to obtain well-resolved 31P magnetic resonance spectra accurately localized to 20 soft tissue sarcomas in vivo, using three-dimensional chemical shift imaging. Fifteen spectra had large phosphomonoester signals (21% of total phosphorus) that contained high amounts of phosphoethanolamine (compared to those of phosphocholine) but no sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Oncology reports
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2012